

## **PCI445X** PC Card and 1394 OHCI Link Controller

# Implementation Guide

August 2000

**PCI Bus Solutions** 

SCPU007

#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

#### Preface

### **Read This First**

#### About This Manual

This manual is intended to assist the designer who is attempting to implement a solution using the PCI4450 or PCI4451. Much, but not all, of the information contained herein can also be found elsewhere. However, the smaller size of this manual, as well as its organization by topics of primary interest to the hardware designer, make it a much more usable source regarding those problems most likely to be encountered in the design process.

#### How to Use This Manual

This document contains the following chapters:

Chapter 1, *PCI445X Device*, provides the designer with information and examples beyond that contained in the data manuals, which will be useful for implementing solutions using the PCI4450 or PCI4451.

Appendix A, *Global Reset Only Bits, PME Context Bits* contains tabular listings of those register bits that can only be cleared by a global reset, and of those register bits used in conjunction with power management events.

Appendix B, *PME and RI Behavior*, provides truth tables that explain events and conditions which can wake up a device that has been placed in partially functional state for power conservation.

Appendix C, *PCI445X Buffer Types*, lists the type of signal buffering used for input and/or output on each terminal of the device.

#### Notational Conventions

This document uses the following conventions.

Program listings, program examples, and interactive displays are shown in a special typeface similar to a typewriter's. Examples use a **bold version** of the special typeface for emphasis; interactive displays use a **bold version** of the special typeface to distinguish commands that you enter from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample program listing:

 0011
 0005
 0001
 .field
 1, 2

 0012
 0005
 0003
 .field
 3, 4

 0013
 0005
 0006
 .field
 6, 3

 0014
 0006
 .even
 .even

Here is an example of a system prompt and a command that you might enter:

C: csr -a /user/ti/simuboard/utilities

In syntax descriptions, the instruction, command, or directive is in a **bold typeface** font and parameters are in an *italic typeface*. Portions of a syntax that are in **bold** should be entered as shown; portions of a syntax that are in *italics* describe the type of information that should be entered. Here is an example of a directive syntax:

.asect "section name", address

.asect is the directive. This directive has two parameters, indicated by *section name* and *address*. When you use .asect, the first parameter must be an actual section name, enclosed in double quotes; the second parameter must be an address.

Square brackets ([ and ] ) identify an optional parameter. If you use an optional parameter, you specify the information within the brackets; you don't enter the brackets themselves. Here's an example of an instruction that has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, *16-bit constant*, is required. The second parameter, *shift*, is optional. As this syntax shows, if you use the optional second parameter, you must precede it with a comma.

Square brackets are also used as part of the pathname specification for VMS pathnames; in this case, the brackets are actually part of the pathname (they are not optional).

□ Braces ({and}) indicate a list. The symbol | (read as *or*) separates items within the list. Here's an example of a list:

 $\left\{\begin{array}{c|cc} * & *+ & *- \end{array}\right\}$ 

This provides three choices: \*, \*+, or \*-.

Unless the list is enclosed in square brackets, you must choose one item from the list.

Some directives can have a varying number of parameters. For example, the .byte directive can have up to 100 parameters. The syntax for this directive is:

.byte value<sub>1</sub> [, ... , value<sub>n</sub>]

This syntax shows that .byte must have at least one value parameter, but you have the option of supplying additional value parameters, separated by commas.

#### **Related Documentation From Texas Instruments**

PCI4450 GFN/GJG PC Card and OHCI Controller Data Sheet, SCPS046 PCI4451 GFN/GJG PC Card and OHCI Controller Data Manual, SCPS054 OHCI.Lynx Configuration Information Application Report, SLLA077 PHY Layout Recommendations Application Report, SLLA020A TSB41LV03A Data Sheet, SLLS364 <u>http://www.ti.com/sc/1394</u>

http://www.ti.com/sc/docs/apps/analog/1394\_physical\_layer\_controllers.html

#### FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

#### Trademarks

MicroStar BGA is a trademark of Texas Instruments.

TI is a trademark of Texas Instruments.

Windows is a registered trademark of Microsoft Corporation. (Windows™ 95, Windows™)

# Contents

| 1 | PCI44 | 45X Devi | ice                                                          |
|---|-------|----------|--------------------------------------------------------------|
|   | 1.1   | System   | Features Selection 1-3                                       |
|   |       | 1.1.1    | Package Types 1-3                                            |
|   |       | 1.1.2    | G_RST and PRST 1-3                                           |
|   |       | 1.1.3    | PME and RI Signaling    1-3                                  |
|   |       | 1.1.4    | ZV Support 1-3                                               |
|   |       | 1.1.5    | EEPROM for Subsystem Vendor and Subsystem ID Registers 1-3   |
|   |       | 1.1.6    | PCI and ISA Style Interrupt 1-4                              |
|   |       | 1.1.7    | Socket Power Switches 1-4                                    |
|   |       | 1.1.8    | Distributed DMA (DDMA) 1-4                                   |
|   |       | 1.1.9    | Optional PCI Signals 1-4                                     |
|   |       | 1.1.10   | Socket Activity LEDs 1-5                                     |
|   |       | 1.1.11   | MFUNC7–MFUNC0 Terminal Assignments 1-5                       |
|   |       | 1.1.12   | Miscellaneous Functions Description 1-5                      |
|   | 1.2   | System   | Implementation                                               |
|   |       | 1.2.1    | Clamping Rails 1-8                                           |
|   |       | 1.2.2    | PCI Bus Interface 1-8                                        |
|   |       | 1.2.3    | PC Card Interface 1-10                                       |
|   |       | 1.2.4    | 2-Wire (I <sup>2</sup> C) Interface for EEPROM 1-10          |
|   | 1.3   | Sample   | PCI445X EEPROM Data File 1-12                                |
|   |       | 1.3.1    | P <sup>2</sup> C Interface for TPS22x6 Power Switch 1-14     |
|   |       | 1.3.2    | Zoomed Video (ZV) Interface 1-14                             |
|   |       | 1.3.3    | Interrupt Signaling Interface 1-15                           |
|   |       | 1.3.4    | Miscellaneous Signals 1-15                                   |
|   |       | 1.3.5    | Requirement of Pullup/Pulldown Registers 1-16                |
|   | 1.4   | BIOS C   | Considerations 1-19                                          |
|   |       | 1.4.1    | Initialization                                               |
|   |       | 1.4.2    | System Sleeping State Consideration 1-20                     |
|   |       | 1.4.3    | Docking System Consideration 1-21                            |
|   | 1.5   | Importa  | Int Information                                              |
|   |       | 1.5.1    | G_RST Clamping Rail 1-22                                     |
|   |       | 1.5.2    | PME/RI_OUT Bit Definition 1-22                               |
|   |       | 1.5.3    | Serialized IRQ Data Stream 1-22                              |
|   |       | 1.5.4    | Socket Power Control 1-22                                    |
|   |       | 1.5.5    | External CLOCK Frequency for P <sup>2</sup> C Interface 1-22 |

#### Contents

| Α | Global Reset Only Bits, PME Context Bits    |                       |  |
|---|---------------------------------------------|-----------------------|--|
|   | A.1 Global Reset Only Bits/PME Context Bits | . A-2                 |  |
| в | PME and RI Behavior                         | <b>. B-1</b><br>. B-2 |  |
| С | PCI445X Buffer TypesC.1PCI445X Buffer Types | <b>. C-1</b><br>. C-2 |  |

# Figures

| 1–1 | Typical System Architecture                   | . 1-2 |
|-----|-----------------------------------------------|-------|
| 1–2 | Serialized Interrupt Signal                   | . 1-5 |
| 1–3 | EEPROM 2-Wire Interface                       | 1-10  |
| 1–4 | TPS22X6 Power Switch Interface                | 1-14  |
| 1–5 | Example of a ZV Interface                     | 1-14  |
| 1–6 | Distributed DMA Signal Connection             | 1-16  |
| 1–7 | $\overline{G_RST}$ and $V_{CCP}$ Relationship | 1-22  |

# **Tables**

| 1–1 | Registers and Bits Loadable Through Serial EEPROM         |
|-----|-----------------------------------------------------------|
| 1–2 | PC Card Interface Pullup Register List 1-16               |
| 1–3 | PCI Bus Interface Pullup Register List 1-17               |
| 1–4 | Miscellaneous Terminals Pullup Register List 1-17         |
| 1–5 | Required Pullup/Pulldown Resistors 1-18                   |
| A–1 | Global Reset Only Cleared Bits A-2                        |
| A–2 | PME Context Bits A-3                                      |
| B–1 | CardBus CTSCHG and Wake-Up Signals Truth Table            |
| B–2 | 16-Bit Card RI/STSCHG and Wake-Up Signals Truth Table B-2 |
| C–1 | PCI445X Terminal Function Assignment and Buffer Types C-2 |
| C–2 | Buffer Type Abbreviations                                 |

### **Chapter 1**

## PCI445X Device

This implementation guide assists platform hardware developers designing with the PCI445X dual socket PC card and 1394 open host controller interface (OHCI) link layer controller (LLC). The PCI445X designation refers to any device in the PCI445X family, for example, the PCI4450 or PCI4451 device.

The document includes an overview of the PCI445X function and features, terminal assignments and pinout illustrations, PCI445X I/O electrical characteristics, identification of required passive components and recommendations for system implementation, and PHY/Link interface signal isolation considerations.

Advantages of the PCI445X device:

- $\Box$  <u>G\_RST</u> (Section 1.1.2)
- □ Internal ring oscillator (Section 1.3.1)
- Zoomed video auto-detect function (Sections 1.1.4, 1.3.2)
- Integrated IEEE1394 OHCI link layer controller

#### Topic

#### Page

| 1.1 | System Features Selection 1-3       |
|-----|-------------------------------------|
| 1.2 | System Implementation1-8            |
| 1.3 | Sample PCI445X EEPROM Data File1-12 |
| 1.4 | BIOS Consideration1-19              |
| 1.5 | Important Information1-22           |

Figure 1–1 illustrates a platform using the PCI445X device along with the TSB41LV03 3-port PHY, which provides the necessary interface to implement a 3-port IEEE1394 node.

Figure 1–1. Typical System Architecture



#### 1.1 System Features Selection

This section explains selectable system features. Feature selection is required for GPIO and MFUNC terminal assignments and PCI445X register initialization. Detailed system implementation methods are described in the following sections. All functions cannot necessarily be used at the same time, because of the limitations of programmable multifunction terminals (i.e., MFUNC7–MFUNC0).

#### 1.1.1 Package Types

The Texas Instruments PCI445X device is offered in two package types: 256-terminal ball grid array (BGA) and 257-terminal MicroStar BGA<sup>™</sup>. MicroStar BGA<sup>™</sup> is a type of chip scale packaging (CSP).

#### 1.1.2 G\_RST and PRST

The PCI445X device has two reset inputs,  $\overline{G_RST}$  and  $\overline{PRST}$ .  $\overline{G_RST}$  resets all registers and state-machines;  $\overline{PRST}$  resets registers that are not required to maintain context in a low power state (see Table A–1 and Table A–2). If the system does not support a wake-up event from D3-state (hot or cold), then these terminals can be tied together.

#### 1.1.3 **PME** and RI Signaling

For supporting a wake-up event, a power management event (PME) and/or an RI signal should be signaled to the system.  $\overrightarrow{PME}$  is available only on the  $\overrightarrow{RI}_OUT/\overrightarrow{PME}$  terminal.  $\overrightarrow{RI}_OUT$  is available on  $\overrightarrow{RI}_OUT/\overrightarrow{PME}$  or MFUNC7.  $\overrightarrow{PME}$  and  $\overrightarrow{RI}_OUT$  signals are usually connected to the south bridge or embedded controller (EC). Detailed PME and RI signal behavior is explained later.

#### 1.1.4 ZV Support

The PCI445X device has internal zoomed video (ZV) buffers. It can support three ZV sources, from two PC cards and one external source. Refer to the detailed implementation guide in Section 1.3.2. The PCI445X device has the ZV autodetect function for supporting a third external zoomed video source. ZVSTAT and ZVPCLK are required to support the third source. (The ZV autodetect function needs ZVPCLK for input, and ZVSTAT for enabling.) ZVSTAT can be assigned on the MFUNC0, MFUNC1, or MFUNC4 terminal.

#### 1.1.5 EEPROM for Subsystem Vendor and Subsystem ID Registers

Subsystem vendor ID and subsystem ID registers (PCI offsets 40h and 42h) can be loaded from EEPROM through a two-wire serial interface. These registers can be configured by BIOS if the PCI445X device is implemented on the motherboard, by setting the SUBSYSRW bit (system control register, PCI offset 80h, bit 5). EEPROM may be required for docking systems and is required for add-in cards. The EEPROM interface terminals SDA and SCL are

automatically assigned on the dedicated SDA and SCL terminals. A pullup resistor (typically 10 k $\Omega$ ) must be added on SDA and SCL when using an EEPROM. The value of the pullup resistor can vary for different EEPROMs. Refer to the EEPROM data sheet or contact the manufacturer for the recommended pullup resistor value.

#### 1.1.6 PCI and ISA Style Interrupt

The PCI445X device provides three modes of interrupt signaling:

- Parallel PCI interrupts only
- Parallel PCI interrupts and serialized ISA interrupts
- Serialized PCI interrupts and serialized ISA interrupts

Three PCI interrupts (INTA, INTB, and INTC) may be used and signaled in either the parallel mode using the MFUNC terminals or in the serial mode. The number of PCI interrupts may be reduced by setting the INTRTIE bit (system control register, PCI offset 80h, bit 29), which allows both the CardBus functions (function 0 and function 1) to report and use INTA or by setting the TIEALL bit (system control register, PCI offset 80h, bit 28) which allows all 3 functions (both CardBus + OHCI) to report and use INTA.

#### 1.1.7 Socket Power Switches

The PCI445X device supports TPS2206 and TPS2216 power switches. Refer to the detailed explanation on each data sheet. The interface between the power switch and the PCI445X device is serialized, so an external or internal clock source is required. By default an external power switch clock is assumed but this can be changed to use the oscillator internal to the PCI445X device by setting P<sup>2</sup>CCLK bit (system control register, PCI offset 80h, bit 27).

#### 1.1.8 Distributed DMA (DDMA)

Most of the systems do not use this function. This function needs PCGNT and PCREQ signals. PCGNT can be assigned to the MFUNC2 or MFUNC3 terminal. PCREQ can be assigned to the MFUNC0, MFUNC4, or MFUNC7 terminal. (See Section 1.3.4.5, Distributed DMA.)

#### 1.1.9 Optional PCI Signals

#### 1.1.9.1 CLKRUN

CLKRUN is the primary method for power reduction on the PCI bus. Most of the notebook PCs implement CLKRUN. The PCI445X device has a dedicated CLKRUN terminal. If it is not used, then a pulldown resistor is required to prevent oscillations on this input.

#### 1.1.9.2 LOCK

This signal can be assigned on the MFUNC1, MFUNC3 or MFUNC7 terminal.

#### 1.1.10 Socket Activity LEDs

Socket activity signals can be assigned on MFUNC4 (slot 1), MFUNC3 (slot 2), MFUNC5 (OHCI\_LED), MFUNC6 (OHCI\_LED), and MFUNC7 (OHCI\_LED).

#### 1.1.11 MFUNC7–MFUNC0 Terminal Assignments

After selecting required functions for the system, multifunction terminals MFUNC7–MFUNC0 are ready to be assigned. Texas Instruments offers Windows-based software, named TIROUTE.EXE, to assist with terminal assignment.

#### 1.1.12 Miscellaneous Functions Description

#### 1.1.12.1 Serialized Interrupt Control

Serialized interrupt signaling is described below.

#### Figure 1–2. Serialized Interrupt Signal

PCLK IRQSER IRQ0 IRQ1 IRQ3 LJ IRQ4 IRQ5 IRQ6 IRQ7 IRQ8 IRQ10 IRQ11 IRQ12 SMI START Frame PCLK . . IRQ13 IRQ14 IRQ15 IOCHCK INTA INTB INTC INTD STOP Frame

The start frame width may vary from four to eight PCI clock cycles. The STOP frame width is two clock cycles for quiet mode and three clock cycles for continuous mode. Default mode is continuous mode for all slave devices and a host device. PIIX4 does not support IRQ0, IRQ8, and IRQ13.

The PCI445X can generate serial IRQ frames for ISA and PCI interrupts. Below are related registers and their definitions.

- INTMODE bits (device control register, PCI offset 92h, bits 2–1). Select interrupt mode
- □ SER\_STEP bits (system control register, PCI offset 80h, bits 31–30). Change PCI interrupt data frame (serial interrupts only)
- INTRTIE bit (system control register, PCI offset 80h, bit 29). Tie CardBus PCI interrupts to INTA
- □ TIEALL bit (system control register, PCI offset 80h, bit 28). Tie all PCI interrupts internally

Refer to the *Serialized IRQ Support for PCI Systems* specification, revision 6.0.

#### 1.1.12.2 CSC Interrupt Routing for Windows Compatibility

The CSC interrupt routing control bit (diagnostic register, PCI offset 93h, bit 5) should be set to 1 (default) to keep Windows compatibility.

#### 1.1.12.3 Asynchronous CSC Interrupt Generation

The ASYNC\_CSC bit (diagnostic register, PCI offset 93h, bit 0) controls the CSC interrupt signaling method. If this bit is set to 0, then CSC is generated synchronously to PCLK (recommended). By default this bit is set to 1, which is the asynchronous mode.

#### 1.1.12.4 CardBus Reserved Terminal Signaling

The CardBus interface has reserved terminals. Usually the CardBus controller drives these terminals low. If the CBRSVD bit (system control register, PCI offset 80h, bit 22) is set to 0, then the CardBus reserved terminal signals are in a high-impedance state when a CardBus card is inserted in the socket.

#### 1.1.12.5 Memory Burst R/W Operation Control

Memory read bursting is controlled via the MRBURSTDN bit (system control register, PCI offset 80h, bit 15) for downstream burst transactions (PCI-to-PC Card) and the MRBURSTUP bit (system control register, PCI offset 80h, bit 14) for upstream burst transactions (PC Card-to-PCI). Memory write bursting is controlled via the POSTEN bit (bridge control register, PCI offset 3Eh, bit 10). This bit enables write posting if disabled. No write data can be accepted (including burst writes) until any previous write data has been forwarded to its destination. By default, write posting and upstream read bursts are disabled.

#### 1.1.12.6 Power Savings Mode

The PCI445X device has a proprietary power-saving mode. It can be disabled by changing the PWRSAVINGS bit (system control register, PCI offset 80h, bit 6) to 0. When this bit is enabled (default), PCI CLOCK is internally gated for a nonfunctioning circuit. For example, the CardBus interface does not function when a 16-bit card is inserted. This power-saving mode will not degrade performance; therefore, the default setting is recommended.

#### 1.1.12.7 PME/RI\_OUT Terminal Control Clarification

PME/RI\_OUT terminal can be set up to signal a combination of these events. The terminal is set up using the PME/RI\_OUT bit (system control register, PCI offset 80h, bit 0), the RIENB bit (card control register, PCI offset 91h, bit 7), and PME enable bit (power management control/status, PCI offset A4h, bit 8). If the terminal is set up as RI\_OUT and RIENB has ring indicate enabled, then this signal follows the RI\_OUT signal for 16-bit I/O cards. If RIENB has ring indicate disabled but PME has PME enabled, then this line reflects the state of the PMESTAT bit (power management control/status, PCI offset A4h, bit 15). If both PME and ring indicate are disabled, then the line remains high. If the line is configured as PME and PME is enabled, then this line follows the state of the PMESTAT bit; otherwise, the line remains high.

#### 1.1.12.8 CLKRUN Control

PCLK can be kept running using CLKRUN protocol by setting the KEEPCLK bit (system control register, PCI offset 80h, bit 1) to 1.

CCLK can be slowed down rather than stopped by CCLKRUN. If CCLKRUN is set, the CLKCTRLEN (CardBus socket 20h, bit 16) and CLKCTR (CardBus socket 20h, bit 0) bits are both set to 1. The clock is slowed down to 1/16. In this mode the PCI clock is not allowed to stop.

#### 1.1.12.9 SMI

A PC card power change event can be reported to the system as SMI (IRQ2 or CSC). It can be controlled with the SMIROUTE, SMISTATUS, and SMIENB bits (system control register, PCI offset 80h, bits 26, 25, and 24, respectively).

#### 1.1.12.10 Socket Power Lock

Socket power can be protected from software control in the  $D3_{hot}$  state. It can be done with the socket power lock bit (device control register, PCI offset 92h, bit 7).

#### 1.1.12.11V<sub>CC</sub> Protection

The VCCPROT bit (system control register, PCI offset 80h, bit 21) controls V<sub>CC</sub> protection for 16-bit cards. This feature protects applying the wrong (higher) V<sub>CC</sub> to the 16-bit card. If a 3.3-V-only card is inserted, then it protects against applying 5 V to the card. Default is 0 (enabled).

#### 1.1.12.12 ZV Port Control and Auto Detect Function

Internal zoomed video buffers can be controlled with the ZV autodetect function. It can be turned on by setting the zoomed video autodetect bit (multimedia control register, PCI offset 84h, bit 5) to 1. Autodetect priority encoding bits (multimedia control register, PCI offset 84h, bits 4–2) can control the priority scheme.

#### 1.2 System Implementation

This section describes signal connection for each interface, PCI bus, PC card interface, I<sup>2</sup>C interface, P<sup>2</sup>C interface, ZV interface, interrupt interface (parallel and serial), miscellaneous signals, and the PHY-Link interface. It also explains pullup/pulldown resistor requirements.

#### 1.2.1 Clamping Rails

The PCI445X device has three clamping rails: V<sub>CCA</sub>, V<sub>CCB</sub>, and V<sub>CCP</sub>. V<sub>CCA</sub> and V<sub>CCB</sub> are not power supplies for PC cards. After a card is powered up, the supply voltage to the card is fed back into the V<sub>CCA</sub> (or V<sub>CCB</sub>) input to the controller. This provides the controller a clamping level for signals to the card. Technically the power switch controlling V<sub>CCA</sub> is also supplying power to the card via this signal, but actually V<sub>CCA</sub> is not a signal via which the controller supplies power to the card.

The PCI445X device only drives out a maximum signal of 3.3 V due to the 3.3-V core. This is not a problem, as 3.3 V is still seen as a logic 1 to a 5-V system.

V<sub>CCA</sub> and V<sub>CCB</sub>

PC Card interface clamping rails. CD1, CD2, VS1, VS2, and STSCHG/RI are not clamped, because these terminals should be able to signal without  $V_{CCA}/V_{CCB}$ .

U V<sub>CCP</sub>

PCI bus interface clamping rail. It includes the MFUNC7/LOCK, MFUNC7–MFUNC0, IRQSER, GRST, and P<sup>2</sup>C terminals. It excludes INTA, INTB, INTC, and PME.

#### Note:

The PME/RI\_OUT terminal uses an open drain (OD) buffer.

#### 1.2.2 PCI Bus Interface

#### PCLK, AD31–AD0, C/BE3–C/BE0, PAR, DEVSEL, FRAME, STOP, TRDY, IRDY, GNT, REQ

These terminals can be connected to the system PCI bus directly.  $\overline{\text{GNT}}$  and  $\overline{\text{REQ}}$  are dedicated signals from the PCI bus arbitrator.

#### **PERR**, **SERR**, and **LOCK**

PERR and SERR are required signals. LOCK is an optional signal and available in MFUNC1, MFUNC3, and MFUNC7.

#### IDSEL

If there is a pulldown on LATCH, then the IDSEL will be routed to AD23, but the consequence of this is that the system designer must use AD23 as

IDSEL, there is no alternative. If another AD line is to be used for IDSEL, then the system designer must leave the pullup off LATCH and use MFUNC7 to route IDSEL. Also, if AD23 is used, then the resistive coupling should not be used.

Refer to the *Implementation Note: System Generation of IDSEL* in the *PCI Local Bus Specification, Revision 2.2 (section 3.2.2.3.5). PCI Local Bus Specification, Revision 2.2 (section 4.2.6, footnote 31)* recommends resistive coupling. A 100- $\Omega$  resistor is recommended.

#### PRST (PCI reset) and G\_RST (Global reset)

 $\overline{G_RST}$  initializes all of the registers and state-machines of the PCI445X device, and  $\overline{PRST}$  does not.  $\overline{G_RST}$  should be asserted during power-on and rebooting. It puts the PCI445X device into the initialized state.  $\overline{PRST}$  does not initialize global-reset-only bits and, if PME is enabled, PME context bits. Refer to Table A–1, Global Reset Only Cleared Bits, and Table A–2, PME Context Bits.  $\overline{PRST}$  is connected to PCI RESET;  $\overline{G_RST}$  requires a special signal in the motherboard. It will come from the chipset. If the system does not support wake-up from D3<sub>cold</sub>, then  $\overline{PRST}$  and  $\overline{G_RST}$  can be tied together. Note that  $\overline{G_RST}$  and  $\overline{PRST}$  are clamped to V<sub>CCP</sub>.

#### □ INTA, INTB, and INTC

When using one of the parallel PCI interrupt modes, INTA, INTB, and INTC should be connected to the PCI interrupt lines. If the INTRTIE bit (system control register, PCI offset 80h, bit 29) is set, then both CardBus functions (functions 0 and 1) will signal and report INTA, and only INTA and INTC will need to be routed. If the TIEALL bit (system control register, PCI offset 80h, bit 28) is set, then all functions (0, 1, and 2) will report INTA and INTA will be the only interrupt required.

#### 

This signal is optional. However, if saving power is a concern, this signal should be implemented. Refer to the *PCI Mobile Design Guide Revision 1.1 (Section 2).* 

#### D PME

This signal is required for the ACPI systems. In a notebook PC, this signal is usually connected to the south bridge (ex., PIIX4) or embedded controller (EC). The PME terminal uses an open-drain type buffer.

#### Note: Pullup Resistor Requirements

A pullup resistor is required for each of the following terminals: IRDY, TRDY, FRAME, STOP, DEVSEL, PERR, SERR, LOCK, PRST, G\_RST, INTA, INTB, INTC, CLKRUN, and PME.

#### 1.2.3 PC Card Interface

The PC Card interface has two modes: the 16-bit interface mode and the CardBus 32-bit interface mode.

#### Damping resistor on CCLK terminal

A series-damping resistor is recommended on the CCLK signal. The damping resistor is system dependent. If line impedance is in the  $60-90-\Omega$  range, a 47- $\Omega$  resistor is recommended (see *PC Card Standard, Revision 7*).

#### **CD** line filtering

PCI445X device has the advanced CDx line filtering circuit. It provides 90  $\mu$ s of noise immunity. A 270-pF filtering capacitor is still recommended for each of the power supply terminals: V<sub>CC</sub>, V<sub>CCS</sub>, and V<sub>CCP</sub>.

#### □ Socket power supply

Socket power is supplied through TPS22X6 power switches. The PCI445X device requires  $V_{CCA}$  and  $V_{CCB}$  for the protection of the other device(s) on the bus.

#### 1.2.4 2-Wire (I<sup>2</sup>C) Interface for EEPROM

The PCI445X device can load configuration registers from EEPROM after  $\overline{G}_RST$  assertion. The SDA and SCL lines require pullup resistors to enable this function. Depending on the EEPROM requirements, the SDA and SCL lines must be pulled up to 3.3 V or 5 V.

Figure 1–3. EEPROM 2-Wire Interface



EEPROM slave address should be 101 0000b.

| Register Offset                                                                     | Register                                                   | Bits Loaded From<br>EEPROM                              |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|--|
| The follow                                                                          | ing are configuration registers for the OHCI function (fun | ction 2)                                                |  |
| PCI register (2Ch)                                                                  | PCI subsystem ID                                           | 15–0                                                    |  |
| PCI register (2Dh)                                                                  | PCI vendor ID                                              | 15–0                                                    |  |
| PCI register (3Eh)                                                                  | PCI maximum latency, minimum grant                         | 11–8, 3–0                                               |  |
| PCI register (F0h)                                                                  | PCI miscellaneous configuration                            | 15, 13, 10, 3–0                                         |  |
| PCI register (F4h)                                                                  | Link enhancements control                                  | 7, 2, 1                                                 |  |
| OHCI register (24h)                                                                 | 1394 global unique ID Hi                                   | 31–0                                                    |  |
| OHCI register (28h)                                                                 | 1394 global unique ID Lo                                   | 31–0                                                    |  |
| The following are configuration registers for PC Card functions (functions 0 and 1) |                                                            |                                                         |  |
| PCI register (40h)                                                                  | Subsystem vendor ID                                        | 15–0                                                    |  |
| PCI register (42h)                                                                  | Subsystem ID                                               | 15–0                                                    |  |
| PCI register (80h)                                                                  | System control                                             | 31–24, 22–14, 6–3, 1, 0                                 |  |
| PCI register (86h)                                                                  | PCI register (86h) General control                         |                                                         |  |
| PCI register (89h)                                                                  | CI register (89h) General-purpose event enable             |                                                         |  |
| PCI register (8Bh)                                                                  | General-purpose output                                     | 3–0                                                     |  |
| PCI register (8Ch)                                                                  | Multifunction routing                                      | 30–28, 26–24, 22–20,<br>18–16, 14–12, 10–8,<br>6–4, 2–0 |  |
| PCI register (91h)                                                                  | Card control                                               | 7, 6, 2–0                                               |  |
| PCI register (92h)                                                                  | Device control                                             | 7, 6, 2–0                                               |  |
| PCI register (93h)                                                                  | Diagnostic                                                 | 7, 5, 0                                                 |  |
| PCI register (A2h)                                                                  | Power management capabilities                              | 15                                                      |  |
| PCI register                                                                        | ExCA ID and revision                                       | 7–0                                                     |  |

Table 1–1. Registers and Bits Loadable Through Serial EEPROM

#### 1.3 Sample PCI445X EEPROM Data File

Following is an example EEPROM data file used with the PCI445X device:

;PCI4450 default EEPROM Data File ;Register 0xXX Binary Description ;-----\_\_\_\_\_ \_\_\_\_\_ 00 0x43 ;01000011 PCI max\_lat (lower 4 bits)/PCI min gnt (lower 4 bits) 01 0x4C ;01001100 PCI Subsystem Vendor ID (lsbyte) \*\* Insert your SSVID LSB 0x10 ;00010000 PCI Subsystem Vendor ID (msbyte) \*\* Insert 02 your SSVID MSB 03 0x11 ;00010001 PCI Subsystem ID (lsbyte) \*\* Insert your SSID LSB 04 0x80 ;10000000 PCI Subsystem ID (Msbyte) \*\* Insert your SSID MSB 05 0xC2 ;11000010 Link Enhancement Register/HC Control defaults MiniROM\_Addr 06 0x40 ;01000000 07 0x56 1394 GUIDHi (lsbyte)\*\* Insert GUIDHi byte ;01010110 800 0x28;00101000 1394 GUIDHi (lsbyte)\*\* Insert GUIDHi byte 109  $0 \times 00$ ;00000000 1394 GUIDHi (msbyte)\*\* Insert GUIDHi byte ;00001000 1394 GUIDHi (msbyte)\*\* Insert GUIDHi byte 20A 0x0830B 0xXX ;XXXXXXXX 1394 GUIDLo (lsbyte)\*\* GUIDLo byte 0 auto incremented from ;serial.dat 0xXX ;XXXXXXX 1394 GUIDLo (lsbyte)\*\* GUIDLo byte 1 00 auto incremented from ;serial.dat ΩD 0xXX ;XXXXXXX 1394 GUIDLo (msbyte)\*\* GUIDLo byte 2 auto incremented from ;serial.dat 0xXX ;XXXXXXX 1394 GUIDLo (msbyte)\*\* GUIDLo byte 3 auto 0E incremented from ;serial.dat 0F 0xXX ;XXXXXXXX ROM CRC (Calculated by EELynx) 10 0x10;00010000 Link Enh Byte 1  $0 \times 00$ ;00000000 PCI Misc Byte 0 11 12 0x24 ;00100100 PCI Misc Byte 1 ;11111111 this area reserved 13 0xFF19 0xFF;11111111 1A 0xFF ;11111111 1в 0xFF;11111111 1C 0xFF ;11111111

| 1D           | 0xFF | ;11111111 |                                           |
|--------------|------|-----------|-------------------------------------------|
| 1E           | 0xFF | ;11111111 |                                           |
| 1F           | 0xFF | ;11111111 |                                           |
| 20<br>and 1) | 0x00 | ;00000000 | Flag Byte (if 0xFF do not load Function 0 |
| 21           | 0x12 | ;00010010 | SubSys Byte 3 ** Insert your SSVID MSB    |
| 22           | 0x34 | ;00110100 | SubSys Byte 2 ** Insert your SSVID LSB    |
| 23           | 0x56 | ;01010110 | SubSys Byte 1 ** Insert your SSID MSB     |
| 24           | 0x78 | ;01111000 | SubSys Byte 0 ** Insert your SSID LSB     |
| 25           | 0x60 | ;01100000 | SysCtrl Byte 0                            |
| 26           | 0xB0 | ;10110000 | SysCtrl Byte 1                            |
| 27           | 0x44 | ;01000100 | SysCtrl Byte 2                            |
| 28           | 0x08 | ;00001000 | SysCtrl Byte 3                            |
| 29           | 0x00 | ;00000000 | General Control                           |
| 2A           | 0x00 | ;00000000 | GP Event Enable                           |
| 2в           | 0x00 | ;00000000 | GP Output                                 |
| 2C           | 0x22 | ;00100010 | MF Route Byte 0                           |
| 2D           | 0x22 | ;00100010 | MF Route Byte 1                           |
| 2E           | 0x22 | ;00100010 | MF Route Byte 2                           |
| 2F           | 0x04 | ;00000100 | MF Route Byte 3                           |
| 30           | 0x02 | ;00000010 | Card Control                              |
| 31           | 0x66 | ;01100110 | Device Control                            |
| 32           | 0x61 | ;01100001 | Diagnostic                                |
| 33           | 0x00 | ;00000000 | PMC Byte 1                                |
| 34           | 0x82 | ;10000010 | ExCA ID and Rev                           |

#### 1.3.1 P<sup>2</sup>C Interface for TPS22X6 Power Switch

The interface between the PCI445X device and TPS22X6 power switch is serialized to reduce the number of signal lines. The P<sup>2</sup>C interface requires only three lines to control the switch. As a PCI445X default, the CLOCK signal is selected from an external source. It is usually provided from RTC, 32.768 kHz. The PCI445X device can also generate this clock from an internal ring oscillator. The typical frequency of the internal ring oscillator is 16 kHz. If using the internal clock source, then a pulldown resistor is required on the CLOCK terminal. If arranging for D3 wake implementation, then connect the power switch RESET terminal to  $\overline{GRST}$ .

Figure 1–4. TPS22X6 Power Switch Interface



#### 1.3.2 Zoomed Video (ZV) Interface

The PCI445X device has an internally buffered and selectable ZV interface. It supports three ZV sources, two from PC Cards and one from an external source. An auto ZV detect function provides software independent ZV switching. The auto ZV detect function senses the pixel clocks, arbitrates three inputs, and selects one of them according to priority bits.

Figure 1–5. Example of a ZV Interface



If the third ZV source is not implemented, ZVPCLK and ZVSTAT are not required. To support ZV audio, an audio codec device is required for L and R sound decoding.

#### 1.3.3 Interrupt Signaling Interface

#### Serialized Interrupt Interface

The serialized interrupt (ISA and PCI) interface is a single-line interface, IRQSER. A pullup resistor is required on this terminal. The signal is synchronous to PCLK, so PCLK is a required signal. Please remember that SUSPEND gates PCLK internally. Usually this signal is connected to the south bridge (ex., PIIX4). The IRQSER signal is sharable with other devices.

#### Parallel PCI Interrupt

See Section 1.2.2, PCI Bus Interface.

#### 1.3.4 Miscellaneous Signals

#### 1.3.4.1 SUSPEND

The SUSPEND signal gates the PRST and G\_RST signals from the PCI445X device. SUSPEND also gates PCLK inside the PCI445X device in order to minimize power consumption. Gating PCLK makes the IRQSER state machine stop until SUSPEND is deasserted. Two requirements for implementing suspend mode are that the PCI bus must not be parked on the PCI445X device and IRQSER signaling is not proceeding when SUSPEND is asserted.

#### 1.3.4.2 RI\_OUT and PME

 $\overline{RI}_{OUT}$  can be programmed on the  $\overline{RI}_{OUT}/\overline{PME}$  or MFUNC7 terminal.  $\overline{PME}$  can be programmed only on the  $\overline{RI}_{OUT}/\overline{PME}$  terminal. To support both  $\overline{RI}_{OUT}$  and  $\overline{PME}$  in a system, the  $\overline{RI}_{OUT}/\overline{PME}$  terminal must be programmed as  $\overline{PME}$ . These signals are usually connected to the south bridge (ex., PIIX4) or an embedded controller (EC). Buffers of the  $\overline{RI}_{OUT}/\overline{PME}$  type are open-drain; therefore, a pullup resistor is required on this terminal.

#### 1.3.4.3 SPKROUT

SPKROUT is a dedicated terminal and it is usually mixed to PC sound, and connected to a sound device.

#### 1.3.4.4 Activity LEDs

Activity LEDs can be programmed on MFUNC terminals. These signals are active-high and driven for 64 ms duration.

#### 1.3.4.5 Distributed DMA (DDMA)

The PCI445X device supports both PC/PCI (centralized) DMA and a distributed DMA slave engine for 16-bit PC Card DMA support.

#### Figure 1–6. Distributed DMA Signal Connection



#### 1.3.5 Requirement of Pullup/Pulldown Resistors

#### Note:

The PCI445X device has integrated pullup resistors and does not require external pullups.

Table 1–2. PC Card Interface Pullup Resistor List<sup>†</sup>‡

| Terminal Name           | Terminal Name        | Terminal Name     |                                      |
|-------------------------|----------------------|-------------------|--------------------------------------|
| (16-bit Memory PC Card) | (16-bit I/O PC Card) | (CardBus PC Card) | Pull Up to Voltage                   |
| CD1                     | CD1                  | CCD1              | V <sub>CC</sub>                      |
| CD2                     | CD2                  | CCD2              | V <sub>CC</sub>                      |
| VS1                     | VS1                  | CVS1              | V <sub>CC</sub>                      |
| VS2                     | VS2                  | CVS2              | V <sub>CC</sub>                      |
| A19                     | A19                  | CBLOCK            | V <sub>CCA</sub> or V <sub>CCB</sub> |
| A20                     | A20                  | CSTOP             | V <sub>CCA</sub> or V <sub>CCB</sub> |
| A21                     | A21                  | CDEVSEL           | V <sub>CCA</sub> or V <sub>CCB</sub> |
| A22                     | A22                  | CTRDY             | V <sub>CCA</sub> or V <sub>CCB</sub> |
| RESET                   | RESET                | CRST              | V <sub>CCA</sub> or V <sub>CCB</sub> |
| WAIT                    | WAIT                 | CSERR             | V <sub>CCA</sub> or V <sub>CCB</sub> |
| RFU                     | INPACK               | CREQ              | V <sub>CCA</sub> or V <sub>CCB</sub> |
| BVD2                    | SPKR                 | CAUDIO            | V <sub>CCA</sub> or V <sub>CCB</sub> |
| BVD1                    | STSCHG               | CSTSCHG           | V <sub>CCA</sub> or V <sub>CCB</sub> |
| A14                     | A14                  | CPERR             | V <sub>CCA</sub> or V <sub>CCB</sub> |
| READY                   | IREQ                 | CINT              | V <sub>CCA</sub> or V <sub>CCB</sub> |
| A15                     | A15                  | CIRDY             | V <sub>CCA</sub> or V <sub>CCB</sub> |
| WP                      | IOIS16               | CCLKRUN           | V <sub>CCA</sub> or V <sub>CCB</sub> |

<sup>†</sup> The PCI445X device has integrated pullup resistors and does not require external pullups. <sup>‡</sup> CFRAME needs a pullup resistor, but it should be implemented on each PC Card.

| ,                    |                  |  |
|----------------------|------------------|--|
| PCI Signal           | Pull-Up Voltage  |  |
| FRAME                | V <sub>CCP</sub> |  |
| TRDY                 | V <sub>CCP</sub> |  |
| IRDY                 | V <sub>CCP</sub> |  |
| DEVSEL               | V <sub>CCP</sub> |  |
| STOP                 | V <sub>CCP</sub> |  |
| SERR                 | V <sub>CCP</sub> |  |
| PERR                 | V <sub>CCP</sub> |  |
| LOCK                 | V <sub>CCP</sub> |  |
| INTA<br>INTB<br>INTC | V <sub>CCP</sub> |  |
| CLKRUN               | V <sub>CCP</sub> |  |
| PRST                 | V <sub>CCP</sub> |  |
| G_RST                | V <sub>CCP</sub> |  |
| PME                  | System dependent |  |

Table 1–3. PCI Bus Interface Pullup Resistor List

The pullup/pulldown on MFUNC depends on how it is implemented. Some signals may require pullups, others pulldowns, and for a GPI or GPO only the system designer would know how that line should be pulled.

Table 1–4. Miscellaneous Terminals Pullup Resistor List

| PCI Signal                     | Required Situation          | Pullup/Pulldown<br>Voltage |
|--------------------------------|-----------------------------|----------------------------|
| MFUNC7-MFUNC4                  | N/C or used as output       | V <sub>CCP</sub> or GND    |
| MFUNC3–MFUNC0<br>(GPIO3–GPIO0) | N/C or used as output       | V <sub>CCP</sub> or GND    |
| MFUNC7(LOCK)                   | N/C or used as output       | V <sub>CCP</sub>           |
| CLOCK                          | Internal OSC is selected    | GND                        |
| LATCH                          | If MFUNC7 is used for IDSEL | GND                        |
| IRQSER                         |                             | V <sub>CCP</sub>           |
| RI_OUT/PME                     |                             | System dependent           |
| SUSPEND                        |                             | System dependent           |

Note: Removing clamping voltage makes all the clamped signals low.

| Signal | Resistor           | Recommended<br>Value (Ω) | Condition |
|--------|--------------------|--------------------------|-----------|
| LPS    | Pulldown (Default) | 1.0 k                    | Required  |

**Note:** All pullup/pulldown resistor value recommendations are provided as guidelines only. The best value for an individual design varies depending upon board characteristics, standard design rules and practices, etc.

#### 1.4 BIOS Considerations

#### 1.4.1 Initialization

This section explains which registers require initialization, but does not discuss detailed information about the registers themselves. Refer to the corresponding specifications.

Reference white paper: <u>http://www.microsoft.com/hwdev/busbios/cardbus1.htm</u>

#### 1.4.1.1 PCI Standard Registers Initialization

#### Command register (PCI offset 04h: 16-bit)

Set to 0007h (enables bus master control, memory space control, and I/O space control)

#### Cache line size register (PCI offset 0Ch: 8-bit)

Set to 08h (It is dependent on host-to-PCI bridge specification). It enables memory read line and memory read multiple command.

#### Latency timer (PCI offset 0Dh: 8-bit)

This register should reflect each PC Card requirement, but Windows does not do so. Therefore, system imlementers should determine the value. A detailed description of this register is in the *PCI Local Bus Interface Specification*. Typical setting for this register is 40h.

#### CardBus socket registers/ExCA base address (PCI offset 10h: 32-bit)

It should be set to 0000 0000h (default).

#### CardBus latency timer register (PCI offset 1Bh: 8-bit)

Setup of this register is not required because the CardBus bus is a single-device bus, and the PCI445X device does not deassert  $\overline{CGNT}$  until a transaction is finished. (It does not mean that the PCI445X device continues the transaction. The PCI445X device would terminate and disconnect or abort the transaction as required).

#### ☐ Memory and I/O windows (PCI offset 1Ch – 3Fh)

All memory and I/O windows should be closed (set to base > limit).

#### □ Interrupt line register (PCI offset 3Ch: 8-bit)

This register is set to FFh (default).

## Subsystem vendor ID and subsystem ID registers (PCI offsets 40h and 42h: 16-bit/16-bit)

These registers can be set through EEPROM or BIOS. These registers are read-only as default. Before writing to the registers, the SUBSYSRW bit (system control register, PCI offset 80h, bit 5) should be set to 1. After setting up the registers, the SUBSYSRW bit should be set 0 to protect

against unexpected overwriting. The values are system and vendor dependent.

## PC Card 16-bit I/F legacy mode base address register (PCI offset 44h: 32-bit)

Set to 0000 03E1h (16-bit mode) and set to 0000 0001 (CardBus mode) in response to a disable call.

Power management capabilities register (PCI offset A2h: 16-bit)

If the system does not support  $V_{AUX}$  in D3<sub>cold</sub> state, then clear bit 15.

Power management control/status register (PCI offset A4h: 16-bit)

Clear bit 15 by writing a 1. This should be done after all the other initialization for the PCI445X device is finished. Make sure that the PCI445X device is in the D0 state, especially after reboot.

#### 1.4.1.2 PCI TI Proprietary Registers Initialization

The registers listed below should be set up according to system requirements. Refer to Section 1.1.12.

- System control register (PCI offset 80h: 32-bit)
- Multimedia control register (PCI offset 84h: 8-bit)
- GPIO3–GPIO0 control registers (PCI offset 88h 8Bh: 8-bit)
- Multifunction routing register (PCI offset 8Ch: 32-bit)
- Card control register (PCI offset 91h: 8-bit)
- Device control register (PCI offset 92h: 8-bit)
- Diagnostic register (PCI offset 93h: 8-bit)
- DMA socket register 0 and 1 (PCI offset 94h, 98h: 32-bit)
- GPE control/status register (PCI offset A8h: 16-bit)
- ExCA identification and revision (ExCA offset 800h: 8-bit)
- Socket power management register (CardBus socket registers offset 20h: 32-bit)

#### 1.4.2 System Sleeping State Consideration

Supporting sleeping states, such as SUSPEND, STANDBY, and HIBERNATION are important for a notebook PC environment. The following describes the sleeping state in APM systems:

1) **SUSPEND** 

Reset signals G\_RST and PRST are gated while SUSPEND is asserted. Power consumption of the PCI445X device is low if SUSPEND is asserted.

#### 2) Register save/restore

Register content is not preserved in the sleeping state (it depends on the system implementation). Therefore, BIOS should restore the register content. Under Windows98, most of the register content is saved and restored by the pci.vxd and cbss.vxd.

#### 3) Troubleshooting tips for sleep/resume issues

Symptoms of sleep/resume issues are:

- System hung up during resume
- PC Card does not work after resume
- PC Card is not recognized after resume

The probable reason for these problems is that the register content is not preserved correctly. Checking the register content before taking the system to the sleep mode and after resuming from the sleep mode may shed some light. If some of the register settings are not the same after resuming from the sleep mode, then the BIOS most likely did not restore those values.

#### 1.4.3 Docking System Consideration

Subsystem IDs can be assigned as long as the SUBSYSRW bit (system control register, PCI offset 80h, bit 5) is set. It is better to do this from EEPROM as no driver will be running to set the SSID up after a hot-dock/warm-dock. Therefore, the IDs should be loaded through the I<sup>2</sup>C interface using an EEPROM.

#### **1.5** Important Information

This section clarifies important system implementation.

#### 1.5.1 **G\_RST** Clamping Rail

 $\overline{G}_{RST}$  is clamped to  $V_{CCP}$ , so removing  $V_{CCP}$  causes assertion of  $\overline{G}_{RST}$ .

Figure 1–7. G\_RST and V<sub>CCP</sub> Relationship



All other signals with clamping rails behave the same way.

#### 1.5.2 PME/RI\_OUT Bit Definition

If  $\overline{\text{PME}}$  is selected, only  $\overline{\text{PME}}$  is signaled on the  $\overline{\text{PME}/\text{RI}_\text{OUT}}$  terminal. If  $\overline{\text{RI}_\text{OUT}}$  is selected, only  $\overline{\text{RI}_\text{OUT}}$  is signaled. The PCI445X device can signal PME and  $\overline{\text{RI}_\text{OUT}}$  as completely separated signals. In this case  $\overline{\text{RI}_\text{OUT}}$  should be assigned on the MFUNC terminal.

#### 1.5.3 Serialized IRQ Data Stream

PCI clock is needed for operation of the PCI445X serialized IRQ state-machine. During SUSPEND assertion, the PCI445X device stops the IRQSER stream. Before asserting SUSPEND, IRQSER must be stopped.

#### 1.5.4 Socket Power Control

An internal or external CLOCK source is needed for the socket power control through the P<sup>2</sup>C interface. The internal ring oscillator is on while the core  $V_{CC}$  is applied to the PCI445X device. External CLOCK source is dependent on the system.

#### 1.5.5 External CLOCK Frequency for P<sup>2</sup>C Interface

If an external P<sup>2</sup>C CLOCK is used, then it will affect:

- Advanced CD line noise filtering
- US test speed
- TPS22X6 power control interface speed

Use of the internal ring oscillator is recommended. Recommended external CLOCK source is the 32.768-kHz real-time clock (RTC).

## Appendix A

# **Global Reset Only Bits, PME Context Bits**

| Торі | ic                                      | Page |
|------|-----------------------------------------|------|
| A.1  | Global Reset Only Bits/PME Context Bits | A-2  |

#### A.1 Global Reset Only Bits/PME Context Bits

| Register Name                           | Space | Offset | Bit                              |
|-----------------------------------------|-------|--------|----------------------------------|
| Subsystem IDs                           | PCI   | 40h    | 31–0                             |
| PC card 16-bit legacy mode base address | PCI   | 44h    | 31–1                             |
| System control                          | PCI   | 80h    | 31–29, 27–24, 22–14, 6–3,<br>1–0 |
| Multimedia control                      | PCI   | 84h    | 7–0                              |
| General status                          | PCI   | 85h    | 2–0                              |
| GPIO0 control                           | PCI   | 88h    | 7, 6, 4, 3, 1, 0                 |
| GPIO1 control                           | PCI   | 89h    | 7, 6, 3, 1, 0                    |
| GPIO2 control                           | PCI   | 8Ah    | 7, 6, 4, 3, 1, 0                 |
| GPIO3 control                           | PCI   | 8Bh    | 7, 6, 3, 1, 0                    |
| MFUNC routing                           | PCI   | 8Ch    | 31–0                             |
| Retry status                            | PCI   | 90h    | 7–1                              |
| Card control                            | PCI   | 91h    | 7, 6, 2, 1, 0                    |
| Device control                          | PCI   | 92h    | 7–0                              |
| Diagnostic                              | PCI   | 93h    | 7–0                              |
| Socket DMA register 0                   | PCI   | 94h    | 1-0                              |
| Socket DMA register 1                   | PCI   | 98h    | 15–0                             |
| GPE control/status                      | PCI   | A8h    | 10, 9, 8, 2, 1, 0                |

Table A-1. Global Reset Only Cleared Bits

Note: The following link registers are reset by global reset only.

- PCI subsystem identification register—PCI offset 2Ch
- MIN\_GNT and MAX\_LAT register—PCI offset 3Eh
- Deci OHCI control register—PCI offset 40h
- Dever management control and status register—PCI offset 48h
- PCI miscellaneous and configuration register—PCI offset F0h
- Link enhancement control register—PCI offset F4h

However, there is no support in the OS for the PME-type wake events of the 1394 peripherals at this time.

#### Table A–2.PME Context Bits

| Register Name                      | Space   | Offset     | Bit              |
|------------------------------------|---------|------------|------------------|
| Bridge control                     | PCI     | 3Eh        | 6                |
| Power management capabilities      | PCI     | A2h        | 15               |
| Power management control/status    | PCI     | A4h        | 15, 8            |
| ExCA power control                 | ExCA    | 802h, 842h | 4, 3, 1, 0       |
| ExCA interrupt and general control | ExCA    | 803h/843h  | 6                |
| ExCA card status change            | ExCA    | 804h/844h  | 3, 2, 1, 0       |
| ExCA card status change interrupt  | ExCA    | 805h/845h  | 3, 2, 1, 0       |
| CardBus socket event               | CardBus | 00h        | 3, 2, 1, 0       |
| CardBus socket mask                | CardBus | 04h        | 3, 2, 1, 0       |
| CardBus socket status              | CardBus | 10h        | 6, 5, 4, 2, 1, 0 |

- □ Global reset only bits are cleared (to default value) only when G\_RST is asserted.
- PME context bits are not cleared (to default value) by PRST if the PME\_EN bit is set to 1.
- $\Box$  Both  $\overline{G}_{RST}$  and  $\overline{PRST}$  can be gated by asserting the  $\overline{SUSPEND}$  signal.

## Appendix B

# PME and RI Behavior

This appendix clarifies PME and RI signal behavior. These signals are important to support the wake-up event from a PC Card (CardBus and 16-bit cards.)

| Торі | ic                  | Page |
|------|---------------------|------|
| B.1  | PME and RI Behavior | B-2  |

#### B.1 PME and RI Behavior

| RINGEN | RIMUX | RIENB | PME_EN | PME_STAT | RI_OUT/PME      | MFUNC7  |
|--------|-------|-------|--------|----------|-----------------|---------|
| 0      | 0     | 0     | 0      | Latched  |                 |         |
| 0      | 0     | 0     | 1      | Latched  | Latched CSTSCHG |         |
| 0      | 0     | 1     | 0      | Latched  |                 |         |
| 0      | 0     | 1     | 1      | Latched  |                 |         |
| 0      | 1     | 0     | 0      | Latched  |                 |         |
| 0      | 1     | 0     | 1      | Latched  | Latched CSTSCHG |         |
| 0      | 1     | 1     | 0      | Latched  |                 |         |
| 0      | 1     | 1     | 1      | Latched  | Latched CSTSCHG |         |
| 1      | 0     | 0     | 0      | Latched  |                 |         |
| 1      | 0     | 0     | 1      | Latched  | Latched CSTSCHG |         |
| 1      | 0     | 1     | 0      | Latched  | CSTSCHG         | CSTSCHG |
| 1      | 0     | 1     | 1      | Latched  | CSTSCHG         | CSTSCHG |
| 1      | 1     | 0     | 0      | Latched  |                 |         |
| 1      | 1     | 0     | 1      | Latched  | Latched CSTSCHG |         |
| 1      | 1     | 1     | 0      | Latched  |                 | CSTSCHG |
| 1      | 1     | 1     | 1      | Latched  | Latched CSTSCHG | CSTSCHG |

Table B–1.CardBus CTSCHG and Wake-Up Signals Truth Table

Table B–2.16-Bit Card RI/STSCHG and Wake-Up Signals Truth Table

| RINGEN | RIMUX | RIENB | PME_EN | PME_STAT | RI_OUT/PME | MFUNC7 |
|--------|-------|-------|--------|----------|------------|--------|
| 0      |       |       |        |          |            |        |
| 1      | 0     | 0     | 0      | Latched  |            |        |
| 1      | 0     | 0     | 1      | Latched  | Latched RI |        |
| 1      | 0     | 1     | 0      | Latched  | RI         | RI     |
| 1      | 0     | 1     | 1      | Latched  | RI         | RI     |
| 1      | 1     | 0     | 0      | Latched  |            |        |
| 1      | 1     | 0     | 1      | Latched  | Latched RI |        |
| 1      | 1     | 1     | 0      | Latched  |            | RI     |
| 1      | 1     | 1     | 1      | Latched  | Latched RI | RI     |

# Appendix C

# PCI445X Buffer Types

| Торіс                    | Page |
|--------------------------|------|
| C.1 PCI445X Buffer Types | C-2  |

#### C.1 PCI445X Buffer Types

| Signal Name | Terminal | Туре | Signal Name | Terminal | Туре |
|-------------|----------|------|-------------|----------|------|
| A_CAD0      | B8       | TS   | A_CAD28     | N2       | TS   |
| A_CAD1      | A7       | TS   | A_CAD29     | N3       | TS   |
| A_CAD2      | C8       | TS   | A_CAD30     | P1       | TS   |
| A_CAD3      | A6       | тs   | A_CAD31     | D9       | TS   |
| A_CAD4      | B7       | тs   | A_CAUDIO    | M1       | I    |
| A_CAD5      | B6       | тs   | A_CBLOCK    | D2       | Р    |
| A_CAD6      | C7       | тs   | A_CC/BE0    | A4       | TS   |
| A_CAD7      | D7       | тs   | A_CC/BE1    | C3       | TS   |
| A_CAD8      | C6       | TSO  | A_CC/BE2    | F2       | TS   |
| A_CAD9      | C5       | TS   | A_CC/BE3    | J1       | TS   |
| A_CAD10     | B4       | тs   | A_CCD1      | A8       | I    |
| A_CAD11     | A3       | тs   | A_CCD2      | M4       | TS   |
| A_CAD12     | C4       | тs   | A_CCLK      | E3       | TS   |
| A_CAD13     | D5       | тs   | A_CLKRUN    | M3       | STS  |
| A_CAD14     | B2       | тs   | A_CDEVSEL   | D1       | STS  |
| A_CAD15     | B3       | тs   | A_CFRAME    | G4       | STS  |
| A_CAD16     | A2       | тs   | A_CGNT      | C1       | STS  |
| A_CAD17     | F1       | тs   | A_CINT      | L2       | I    |
| A_CAD18     | G3       | тs   | A_CIRDY     | E1       | STS  |
| A_CAD19     | G2       | Р    | A_CPAR      | C2       | TS   |
| A_CAD20     | H3       | TS   | A_CPERR     | D3       | STS  |
| A_CAD21     | H1       | TS   | A_CREQ      | J3       | I    |
| A_CAD22     | J4       | TS   | A_CRST      | H2       | 0    |
| A_CAD23     | J2       | TS   | A_CSERR     | L3       | I    |
| A_CAD24     | K2       | TS   | A_CSTOP     | E4       | STS  |
| A_CAD25     | К3       | TS   | A_CSTSCHG   | M2       | I    |
| A_CAD26     | K1       | TS   | A_CTRDY     | E2       | STS  |
| A_CAD27     | N1       | TS   | A_CVS1      | L1       | I/O  |

Table C–1. PCI445X Terminal Function Assignment and Buffer Types

Note: The voltage sense terminals (VS1/CVS1, VS2/CVS2) are always driven low except under the following conditions:

1) High-impedance state during RESET

2) Toggle during socket interrogation

| Signal Name | Terminal | Туре | Signal Name | Terminal | Туре |
|-------------|----------|------|-------------|----------|------|
| A_CVS2      | G1       | I/O  | AD25        | N20      | TS   |
| A_RSVD      | A5       | TS   | AD26        | M17      | TS   |
| A_RSVD      | B1       | TS   | AD27        | M18      | TS   |
| A_RSVD      | P2       | TS   | AD28        | M19      | TS   |
| AD0         | V13      | TS   | AD29        | M20      | TS   |
| AD1         | Y14      | TS   | AD30        | L19      | TS   |
| AD2         | W14      | TS   | AD31        | L18      | TS   |
| AD3         | Y15      | TS   | B_CAD0      | J19      | TS   |
| AD4         | W15      | TS   | B_CAD1      | J17      | TS   |
| AD5         | Y16      | TS   | B_CAD2      | J18      | TS   |
| AD6         | U14      | TS   | B_CAD3      | H19      | TS   |
| AD7         | V15      | TS   | B_CAD4      | H20      | TS   |
| AD8         | Y17      | TS   | B_CAD5      | G20      | TS   |
| AD9         | V16      | TS   | B_CAD6      | H18      | TS   |
| AD10        | W17      | TS   | B_CAD7      | F20      | TS   |
| AD11        | Y18      | TS   | B_CAD8      | G18      | TS   |
| AD12        | U16      | TS   | B_CAD9      | E20      | TS   |
| AD13        | V17      | TS   | B_CAD10     | G17      | TS   |
| AD14        | W18      | TS   | B_CAD11     | F18      | TS   |
| AD15        | Y19      | TS   | B_CAD12     | E18      | TS   |
| AD16        | T18      | TS   | B_CAD13     | D20      | TS   |
| AD17        | T19      | TS   | B_CAD14     | C20      | TS   |
| AD18        | T20      | TS   | B_CAD15     | D19      | TS   |
| AD19        | R18      | TS   | B_CAD16     | E17      | TS   |
| AD20        | P17      | TS   | B_CAD17     | C16      | TS   |
| AD21        | R19      | TS   | B_CAD18     | B16      | TS   |
| AD22        | R20      | TS   | B_CAD19     | A16      | TS   |
| AD23        | P18      | TS   | B_CAD20     | D14      | TS   |
| AD24        | N19      | TS   | B_CAD21     | A15      | TS   |

Table C–1. PCI445X Terminal Function Assignment and Buffer Types (Continued)

Note: The voltage sense terminals (VS1/CVS1, VS2/CVS2) are always driven low except under the following conditions:

1) High-impedance state during RESET

2) Toggle during socket interrogation

| Signal Name | Terminal | Туре | Signal Name | Terminal | Туре |
|-------------|----------|------|-------------|----------|------|
| B_CAD22     | C14      | TS   | B_CSERR     | B11      | STS  |
| B_CAD23     | A14      | TS   | B_CSTOP     | A20      | STS  |
| B_CAD24     | A13      | TS   | B_CSTSCHG   | A11      | I    |
| B_CAD25     | D12      | TS   | B_CTRDY     | C17      | STS  |
| B_CAD26     | C12      | TS   | B_CVS1      | B12      | I/O  |
| B_CAD27     | C10      | TS   | B_CVS2      | C15      | I/O  |
| B_CAD28     | D10      | TS   | B_RSVD      | C9       | TS   |
| B_CAD29     | A9       | TS   | B_RSVD      | C19      | TS   |
| B_CAD30     | B9       | TS   | B_RSVD      | G19      | TS   |
| B_CAD31     | D9       | TS   | C/BE0       | W16      | TS   |
| B_CAUDIO    | C11      | I    | C/BE1       | V18      | TS   |
| B_CBLOCK    | C18      | STS  | C/BE2       | U20      | TS   |
| B_CC/BE0    | F19      | TS   | C/BE3       | N18      | TS   |
| B_CC/BE1    | D18      | TS   | CLKRUN      | K18      | 0    |
| B_CC/BE2    | A17      | TS   | CLOCK       | U12      | 0    |
| B_CC/BE3    | C13      | I    | DATA        | V12      | 0    |
| B_CCD1      | J20      | I    | DEVSEL      | U19      | STS  |
| B_CCD2      | B10      | I    | FRAME       | V20      | STS  |
| B_CCLK      | B17      | TS   | G_RST       | Y12      | I    |
| B_CDEVSEL   | B18      | STS  | GND         | A1       | Р    |
| B_CFRAME    | A18      | STS  | GND         | D4       | Р    |
| B_CGNT      | A19      | 0    | GND         | D8       | Р    |
| B_CINT      | A12      | I    | GND         | D13      | Р    |
| B_CIRDY     | D16      | STS  | GND         | D17      | Р    |
| B_CLKRUN    | A10      | STS  | GND         | H4       | Р    |
| B_CPAR      | B20      | TS   | GND         | H17      | Р    |
| B_CPERR     | B19      | STS  | GND         | N4       | Р    |
| B_CREQ      | B14      | I    | GND         | N17      | Р    |
| B_CRST      | B15      | 0    | GND         | U4       | Р    |

Table C–1. PCI445X Terminal Function Assignment and Buffer Types (Continued)

Note: The voltage sense terminals (VS1/CVS1, VS2/CVS2) are always driven low except under the following conditions:

1) High-impedance state during RESET

2) Toggle during socket interrogation

| Signal Name  | Terminal | Туре | Signal Name | Terminal | Туре |
|--------------|----------|------|-------------|----------|------|
| GND          | U8       | Р    | PHY_DATA6   | U9       | TS   |
| GND          | U13      | Р    | PHY_DATA7   | V9       | TS   |
| GND          | U17      | Р    | PHY_LREQ    | Y5       | 0    |
| GNT          | K20      | I    | PME/RI_OUT  | Y13      | OD   |
| IDSEL/MFUNC7 | P20      | I/O  | PRST        | K19      | I    |
| IRDY         | T17      | STS  | REQ         | L20      | 0    |
| IRQSER       | W13      | TS   | SCL         | W10      | TS   |
| LATCH        | W12      | TS   | SDA         | Y9       | TS   |
| LINKON       | Y6       | I    | SERR        | Y20      | OD   |
| LPS          | W5       | 0    | SPKROUT     | V11      | 0    |
| MFUNC0       | W11      | I/O  | STOP        | V19      | STS  |
| MFUNC1       | Y11      | I/O  | SUSPEND     | U11      | I    |
| MFUNC2       | Y10      | I/O  | TRDY        | U18      | STS  |
| MFUNC3       | V10      | I/O  | VCCA        | B5       | Р    |
| MFUNC4       | W9       | I/O  | VCCA        | F3       | Р    |
| MFUNC5       | V5       | I/O  | VCCA        | L4       | Р    |
| MFUNC6       | Y4       | I/O  | VCCB        | B13      | Р    |
| PAR          | W19      | STS  | VCCB        | E19      | Р    |
| PCLK         | K17      | I    | VCCP        | P19      | Р    |
| PERR         | W20      | STS  | VCCP        | V14      | Р    |
| PHY_CLK      | V6       | I    | VCC3.3      | D6       | Р    |
| PHY_CTL0     | U7       | TS   | VCC3.3      | D11      | Р    |
| PHY_CTL1     | W6       | TS   | VCC3.3      | D15      | Р    |
| PHY_DATA0    | V7       | TS   | VCC3.3      | F4       | Р    |
| PHY_DATA1    | W7       | тs   | VCC3.3      | F17      | Р    |
| PHY_DATA2    | Y7       | TS   | VCC3.3      | K4       | Р    |
| PHY_DATA3    | V8       | TS   | VCC3.3      | L17      | Р    |
| PHY_DATA4    | W8       | тs   | VCC3.3      | R4       | Р    |
| PHY_DATA5    | Y8       | TS   | VCC3.3      | R17      | Р    |

Table C–1. PCI445X Terminal Function Assignment and Buffer Types (Continued)

| Signal Name | Terminal | Туре | Signal Name | Terminal | Туре |
|-------------|----------|------|-------------|----------|------|
| VCC3.3      | U6       | Р    | ZV_UV4      | W1       | TSO  |
| VCC3.3      | U10      | Р    | ZV_UV5      | Y1       | TSO  |
| VCC3.3      | U15      | Р    | ZV_UV6      | W2       | TSO  |
| ZV_HREF     | P3       | TSO  | ZV_UV7      | Y2       | TSO  |
| ZV_LRCLK    | V4       | TSO  | ZV_VSYNC    | R2       | TS   |
| ZV_MCLK     | W4       | TSO  | ZV_Y0       | T1       | TSO  |
| ZV_PCLK     | Y3       | TSO  | ZV_Y1       | P4       | TSO  |
| ZV_SCLK     | W3       | TSO  | ZV_Y2       | R3       | TSO  |
| ZV_SDATA    | U5       | TSO  | ZV_Y3       | T2       | TSO  |
| ZV_UV0      | Т4       | TSO  | ZV_Y4       | U1       | TSO  |
| ZV_UV1      | V2       | TSO  | ZV_Y5       | Т3       | TSO  |
| ZV_UV2      | U3       | TSO  | ZV_Y6       | U2       | TSO  |
| ZV_UV3      | V3       | TSO  | ZV_Y7       | V1       | TSO  |

Table C–1. PCI445X Terminal Function Assignment and Buffer Types (Continued)

| Buffer Type | Description                                                                                                 |
|-------------|-------------------------------------------------------------------------------------------------------------|
| I/O         | Standard input/output                                                                                       |
| I           | Standard input only                                                                                         |
| 0           | Standard output only                                                                                        |
| OD          | Open drain                                                                                                  |
| Р           | Power, GND, or clamp rail                                                                                   |
| STS         | Sustained 3-state bidirectional. An active-low signal must be driven high for one cycle before deasserting. |
| TS          | 3-state bidirectional                                                                                       |
| TSO         | 3-state output only                                                                                         |

| // | Table C–2. | Buffer | Туре | Abbre | viations |
|----|------------|--------|------|-------|----------|
|----|------------|--------|------|-------|----------|